
AJAX, fetch, and
Axios

Asynchronous JavaScript?

HTTP Requests in the
Browser

• URL bar

• Links

• JavaScript

• window.location.href = ‘http://www.google.com'

• Submitting forms (GET/POST)

All of the above make the browser navigate and retrieve new
documents

http://www.google.com'

HTTP Requests in the
Browser

• Often times for each of the above actions, views are
stored on the server and served up as HTML pages

• When a user goes to a new page, the browser navigates
in totality, refreshing and retrieving a brand new HTML
document.

• Each page, since it’s a new page, retrieves stylesheets,
scripts, files, etc.

What is AJAX?

• “Asynchronous JavaScript And XML”

• Making background HTTP requests using JavaScript

• Handling the response of those HTTP requests with
JavaScript

• No page refresh necessary

• window.fetch()

Asynchronous JS

• Basically, we are referring to JavaScripts ability to act in a
non-blocking manner.

• Imagine if every network request that took time to give us
a response blocked any other operations from executing?
The entire internet would be at a stand-still

Asynchronous JS
• The initial method developed to deal with asynchronous

code was to use callbacks (hello, familiar!) to provide a
function to run once a request has been resolved.

• The following code snippet is an example of a callback
being used to deal with the result of the async
downloadPhoto function

Asynchronous JS
• While callbacks are important to understand, they can

lead to something referred to as callback hell:
Async action # 1

Async action # 2 using
async #1 Result

Action on #1 Result

Action on # 2 result

Asynchronous JS

• To better understand proper asynchronous callback
usage, there is a great website called callbackhell.com
that does a good job of getting into best practices for
composing async callback functions and avoiding the
dreaded ‘callback hell’.

• We will explore a better option later.

http://callbackhell.com

Why AJAX?
• AJAX allows us to build Single Page Applications (SPAs).

Via wikipedia:

• “An SPA is a web application or web site that interacts
with the user by dynamically rewriting the current page
rather than loading entire new pages from a server”

• SPAs mean no reload or “refresh” within the user interface

• JS manipulates the DOM as the user interacts

• User experience similar to a native / mobile application

Wait, what is fetch()?
• The Fetch API provides an interface for fetching resources

(including across the network).

• Provides a generic definition of Request and Response
objects, as well as other things involved with network requests

• The fetch() method takes one mandatory argument, the path
to the resource you want to fetch, and returns a promise that
resolves to the response to that request (successful or not).

• You can optionally pass an init options object as second
argument (used to configure req headers for other types of
HTTP requests such as PUT, POST, DELETE)

Using fetch()

The simplest use of fetch takes one argument - the path to
the resource you want to fetch - and returns a promise
containing the response body.

Above, we are fetching a JSON file across the network to
print to the console.

What is Axios?

• Axios is a promise-based HTTP client for JavaScript. It
allows you to:

• Make XMLHttpRequests from the browser

• Make http requests from node.js

• Supports the Promise API

• Automatic transforms for JSON data

Using Axios

• Above, we are using the axios.get(<uri>) function
to send an HTTP GET request to the endpoint that we
want to get information from

Using Axios
• Axios provides more functions to make other network requests as well,

matching the HTTP verbs that you wish to execute, such as:

• axios.post(<uri>, <payload>)

• axios.put(<uri>, <payload>)

• axios.delete(<uri>, <payload>)

• You can also pass a config object instead:

axios({
 method: ‘get’,
 url: ‘http://dummy.data'
 responseType: ‘<insert response type, e.g. stream>’
})

http://dummy.data'

Using Axios

• In order to use Axios, you can simply npm install
axios in your project and either import or require it to
use.

Fetch vs Axios
• Fetch API is built into the window object, and therefore

doesn’t need to be installed as a dependency or imported in
client-side code.

• Axios needs to be installed as a dependency. However, it
automatically transforms JSON data for you, thereby
avoiding the two-step process of making a .fetch()
request and then a second call to the .json() method on
the response.

• There is a good medium article outlining some more
differences here: https://medium.com/@thejasonfile/fetch-vs-
axios-js-for-making-http-requests-2b261cdd3af5

https://medium.com/@thejasonfile/fetch-vs-axios-js-for-making-http-requests-2b261cdd3af5
https://medium.com/@thejasonfile/fetch-vs-axios-js-for-making-http-requests-2b261cdd3af5
https://medium.com/@thejasonfile/fetch-vs-axios-js-for-making-http-requests-2b261cdd3af5

